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Autonomous replication sequences 
from the Amaranthus palmeri eccDNA replicon 
enable replication in yeast
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Abstract 

Objective: The objective of the research presented here was to determine whether autonomous replication 
sequences (ARS) discovered in the eccDNA replicon of glyphosate resistant Amaranthus palmeri enable self-replication 
in a yeast system.

Results: Sequence analysis of the eccDNA replicon revealed a region of sharp changes in A + T/G + C content with 
characteristic bending indicative of an autonomous replication sequence. Further sequence analysis revealed an 
extended autonomous replication sequence (EACS) in close proximity to multiple DNA unwinding element (DUE) 
sequences. This region of the eccDNA replicon enabled autonomous replication of an ARS-less yeast plasmid.
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Introduction
Amplification of genes and gene clusters is a primary 
mechanism of genomic plasticity that is triggered in 
response to environmental stimuli. Recent reports have 
shown that these amplified genes and gene clusters 
are maintained as extra-chromosomal circular DNAs 
(eccDNAs) and are present across kingdoms. EccDNAs 
have been discovered in normal and cancerous human 
cells [1, 2], yeast [3], and plants [4–6]. In human can-
cers, eccDNAs have been shown to encode functional 
oncogenes, are present in multiple copies, and maintain 
highly accessible chromatin structures that promote 
long-range interactions with chromatin [7]. The presence 
of these eccDNAs across kingdoms suggests a funda-
mental biological role. In the plant species Amaranthus 
palmeri (S.) Wats., an eccDNA (the eccDNA replicon) 
was recently reported as the mechanism of amplification 

of the 5-enolpyruvylshikimate-3-phosphate synthase 
gene (EPSPS) that endows glyphosate resistance [4, 6]. 
Sequencing of the EPSPS eccDNA replicon revealed a 
large structure (~ 400 kb) with a complex repetitive archi-
tecture. The eccDNA replicon was reported to contain 
58 genes in addition to the EPSPS gene, of which some 
had high constitutive expression profiles [6]. A genomic 
tethering mechanism was proposed that may use a pro-
tein intermediate, similar to human viruses, to medi-
ate the association of the eccDNA replicon with nuclear 
chromatin as a means for genomic maintenance as part 
of the germline. Furthermore, a synteny/collinearity 
analysis with the chromosomal-scale reference assem-
blies of waterhemp (A. tuberculatus) and grain amaranth 
(A. hypochondriacus) revealed that the eccDNA replicon 
was likely the result of interactions among distal genomic 
regions, rather than a singular focal amplification sur-
rounding the EPSPS gene. However, the mechanism by 
which the eccDNA replicon becomes amplified in copy 
number is not understood. Previous work has shown 
that genomic structure is associated with replication 
origins in plants [8], and that autonomously replicating 
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sequences in plants have activity in yeast [9]. Here, we 
present an analysis of the eccDNA replicon that discov-
ered sequences with a propensity for bending that are 
typically associated with autonomous replication sites 
and functional verification that these eccDNA sequences 
enable autonomous replication in yeast.

Main text
Methods
Sequence analysis of DNA A + T content and curvature
Genomic A + T and G + C content was globally deter-
mined for the eccDNA replicon by dividing the sequence 
into 50  bp sequential windows with the MakeWindows 
function of BedTools v.2.29.2 [10]. A + T and G + C con-
tent was determined for each window using the nuc func-
tion of BedTools v2.29.2 [10] and plotted as a circular 
track using the Circos v.0.69.9 [11]. DNA curvature anal-
ysis was performed by extracting a 256 bp segment from 
the eccDNA replicon sequence (coordinates: 287,484–
287,739) and analyzed for curvature using the online ver-
sion of dnacurve 2020.1.1 (17 Jan, 2020 release) [12] using 
the wedge model to determine the axial path of this seg-
ment of DNA [13]. The resulting protein data bank (PDB) 
file was visualized with the UCSF Chimera tool [14].

Cloning and functional verification of eccDNA autonomous 
replication sequences (ARS) sequences in yeast
The eccDNA ARS sequences were amplified using the 
23A10 bacterial artificial chromosome (BAC) as tem-
plate [15] using primers 167, 312F_CEN-SLIC and 168, 
187R_SLIC (Additional file  1: Table  S2). The yeast vec-
tor, pRS315, was linearized via PCR using primers 
pRS_ΔCEN-F and pRS_ΔARS-R such that the CEN6 
sequence remained, but the native ARS was removed. Q5 
polymerase was used for all PCRs. The eccDNA ARS was 
assembled into pRS305 and the ARS-less pRS315 using a 
sequence and ligation independent cloning (SLIC) reac-
tion [16]. Constructs were confirmed with a restriction 
digest and sequencing. Saccharomyces cerevisiae (ATCC 
208288) were transformed in triplicate as previously 
described [17]. Yeast cells were grown in a YPD (10 g/L 
yeast extract, 20  g/L peptone, 20  g/L glucose) precul-
ture overnight at 28 °C and 250 rpm. In a 250-mL baffled 
flask, 50 mL of pre-warmed YPD was inoculated to a final 
titer of 5 × 106 cells/mL. The culture was grown to a final 
titer of 2 × 107 cells/mL at 28 °C and 250 rpm. Cells were 
harvested by centrifugation at 3000×g for 5  min. The 
cell pellet was resuspended in 25  mL of sterile milli-Q 
water and centrifuged again three times before cells were 
resuspended in 1.0  mL of sterile water. Cell pellet was 
then resuspended in 360  μL freshly made transforma-
tion mix (240 μL PEG 3350 (50% w/v), 34 μL 1.0 M LiAc, 
50  μL single-stranded salmon sperm DNA (2  mg/mL), 

36  μL plasmid DNA plus sterile water). Cells were heat 
shocked at 42 °C for 40 min and resuspended in 1 mL of 
sterile milli-Q water. 200 μL of cells were plated on YSC-
Leu + 2% glucose plates and grown at 28  °C for 2  days 
and colonies counted. pRS305 lacks an ARS and served 
as a negative control while pRS315 contains an ARS and 
served as a positive control.

To confirm plasmid retention, colonies from trans-
formed plates were passaged on YSC-Leu + 2% glucose 
plates three times. The passaged cells were used for a col-
ony PCR using Q5 polymerase and primers ARS_cPCR-F 
and ARS_cPCR-R. The original colonies from the pRS305 
transformation plate were used as templates, as they did 
not survive passaging. Positive controls using plasmids 
pRS305 + eccARS and pRS315 + eccARS and a negative 
control using wild type S. cerevisiae cells were performed. 
The PCR products were run on a 1% TAE gel with Gen-
script Ready-to-Use™ Plus 100 bp DNA Ladder.

Results
Sequence analysis of DNA A + T content and curvature
The eccDNA replicon is heavily punctuated with sharp 
changes in A + T and G + C content, which may imply 
biological function [18], including replication initiation 
sites [19] (Fig.  1). Overall, the eccDNA replicon biased 
in A + T content at 66%. A motif scan of the eccDNA 
replicon revealed a single exact match to the Extended 
Autonomous Consensus Sequence (EACS, 17  bp), pre-
viously described in yeast and other eukaryotes [20] 
(Fig. 1 and Additional file 2: Figure S1). A 50 bp window 
surrounding the EACS sequence was characteristically 
high in A + T content for an origin of replication at 76% 
(Additional file 2: Figure S1). Just upstream of the EACS 
sequence, two additional regions with elevated A + T 
content were also found and are characteristic of DNA 
unwinding elements (DUE) (Additional file 2: Figure S1). 
DUE 1 is 43  bp with 73% A + T content and DUE 2 is 
41 bp in length and 62% A + T (Additional file 2: Figure 
S1). Nucleotide comparison of DUE 1 and DUE 2 did not 
reveal similar sequence, except for consistent elevated 
A + T content and a 6 bp AAT AAA  motif that is in com-
mon (Additional file 2: Figure S1). DNA curvature mod-
eling of a 256  bp window containing the EACS and the 
two predicted DUE elements (287,484–287,739) revealed 
DNA bending, which is characteristic of reported ori-
gins of replication (Fig. 3 and Additional file 3: Table S1). 
There is consistent curvature from the beginning of 
DUE 1 to the end of DUE 2, with 2 sharper bends just 
in front of and after the EACS motif which is indica-
tive of low helical stability (Fig.  2). Interestingly, this 
predicted origin of replication is contained within the 
eccDNA replicon gene, AP_R.00g000493, that contains a 
NAC domain. NACs are a large family of plant specific 
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transcription factors whose functions include apical 
shoot development [21], secondary wall formation [22], 
and responses to abiotic/biotic pressures [23]. Interest-
ingly, both the closely related genomes of waterhemp (A. 
tuberculatus), and grain amaranth (A. hypochondriacus) 
were searched and do not contain an annotated ortholog 
to the NAC gene. However orthologs were found in Spi-
nacia oleracea, Beta vulgaris, and Chenopodium qui-
noa, which contained 2 copies. A nucleotide alignment 
of these sequences produced an overall pairwise iden-
tity of 63% with 756 identical sites, and an overall A + T 
content of 60% (Additional file 4: Figure S2). Both of the 
DUE sequences contain both insertions and deletions 

(indels) and single nucleotide variants (SNVs) in each of 
the three species, relative to the eccDNA replicon (Addi-
tional file 4: Figure S2). Interestingly, the EACS sequence 
was more conserved among the other species with seven 
variant positions across the 17 nucleotide consensus 
sequence. In addition, the other species sequences were 
less A + T rich when compared to the eccDNA replicon 
(Additional file 4: Figure S2).

Cloning and functional verification of EACS activity in yeast
By cloning ± 1 kb regions containing the putative origin 
of replication into a selectable ARS-less yeast vector, we 
observed dividing colonies, verifying that the eccDNA 

Fig. 1 The eccDNA replicon reference sequence. Circular map of the eccDNA replicon with A + T content distribution determined as 50 bp 
sequential windows. The translucent highlight marks the single copy of the extended autonomous consensus sequence (EACS) in the NAC gene 
(AP_R.00g000493), number 41 on the map. This region on the circular map is zoomed in for high level detail of A + T content
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replicon ARS sequence is functional and can facili-
tate DNA replication in yeast (Fig.  3, Additional file  3: 
Table S1 and Additional file 5: Figure S3). Recombinant 
yeast growth was much slower with a lower abundance of 

colonies on plates with the eccDNA replicon ARS, rela-
tive to the control ARS suggesting a possible role of cis-
elements and trans-factors for efficiency in the plant [19] 
(Additional file 5: Figure S3).

Fig. 2 DNA bending profile of the EACS region. A 256 bp window of sequence of the EACS region of the eccDNA replicon. The extended 
autonomous consensus sequence (EACS) is highlighted in red and includes the 17 bp sequence with an exact match to the yeast ARS. DNA 
unwinding elements are highlighted in orange, with the conserved motif AAT AAA  in blue

Fig. 3 a Plotted transformation effiencies (CFU/μg) for pRS305, pRS315, pRS305 + CS-ARS1 + CEN6, and pRS315 + CS-ARS1 + CEN6. Statistical 
significance is noted by asterisks (***p-value = 0.0003; **p-value < 0.005; *p-value < 0.02; n.s., not significant). Smaller gray dots represent individual 
data points, larger black dot indicates sample average. Error bars represent standard deviation of the mean (n = 3 for all samples). b Tabulated 
data plotted in a. c Gel results for a colony PCR. Lanes are as follows: L, ladder; 1, pRS305 + CS-ARS1 + CEN6 plasmid; 2, pRS315 + CS-ARS1 + CEN6 
plasmid; 3, wild type S. cerevisiae cells; 4, pRS305 transformed cells; 5, passaged pRS315 transformed cells, 6–8, triplicates of passaged 
pRS305 + CS-ARS1 + CEN6 transformed cells; 9–11, triplicates of passaged pRS315 + CS-ARS1 + CEN6 transformed cells
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Transformation efficiencies for eccDNA ARS con-
taining plasmids are approximately 300–400  CFU/μg, 
as compared to 2.15 × 106  CFU/μg for pRS315 (Fig.  3). 
Transformation efficiencies between plasmids contain-
ing the eccDNA ARS are not statistically significant 
from each other, but are statistically different from the 
pRS305 and pRS315 plasmids, as determined by a two-
tailed t-test with a 95% confidence level (Additional file 6: 
Figure S4). To validate plasmid retention and stability, 
cells were passaged on selective plates three times. Pas-
saged cells were used in a colony PCR to validate reten-
tion of the ARS sequence (Fig.  3). Demonstration of 
bands in the cells transformed with plasmids containing 
CS-ARS1, and not in the wild type or cells transformed 
with pRS315, indicates dividing plasmids are due to the 
eccDNA ARS1.

Discussion
The discovery of the eccDNA replicon as a mechanism 
of gene amplification is a remarkable and novel instance 
of genomic plasticity, however little is known about the 
mechanism of replication [4, 6]. Autonomous replicating 
sequences (ARS) can function as origins of replication in 
eukaryotes [20], and plants have been shown to have con-
served ARS structures and sequence features commonly 
found in yeast and higher animals [8]. Additional reports 
have corroborated conserved ARS sequences in plants 
such as Nicotiana tabacum and Brassica species con-
tain ARS sequences that function as a replication origin 
in yeast [9, 24, 25]. Characteristics of replication origins 
in plants include elevated A + T content coupled with 
DNA structure in the form of bending flanked by unu-
sually straight structures [8]. In addition, sequence ele-
ments called DNA unwinding elements are common in 
both prokaryotes and eukaryotes. These regions are typi-
cally found in close proximity to ARS sequences, have 
elevated A + T content, and helical instability that can 
result in structure formation [26]. DUEs typically range 
in size from 30 to 100 bp without any typical consensus 
sequence [27, 28].

Here, we present an extension of our previous report 
that describes the sequence of the eccDNA replicon 
[6]. Sequence analysis of the eccDNA replicon found an 
exact match to the EACS sequence reported in yeasts and 
plants. A closer examination of this region identified two 
putative DNA unwinding elements in cis- organization to 
the EACS sequence with only a 6 bp nucleotide motif in 
common. These regions have high A + T content and dis-
play helical instability that can result in DNA structure. 
This DNA structure in the form of bending is thought 
to occur to facilitate accessibility of the DNA replisome 
[29], while the elevated A + T content is likely crucial for 
denaturation and maintenance of a stably unwound DNA 

structure during replication. DNA modeling also found 
two major bends that flank the EACS sequence coupled 
to straight DNA. This similar DNA structure being asso-
ciated with autonomously replicating sequences from 
plants was reported in a study by Eckdahl et al. [8]. Clon-
ing of the eccDNA replicon EACS + DUE segment pro-
duced dividing colonies in yeast when transformed into 
an ARS-less vector. Even though the eccDNA replicon 
contains an exact match to the yeast ARS sequence, the 
colony growth was much slower in comparison to the 
control (yeast native ARS) which suggests possible roles 
of cis/trans factors for efficiency in plants.

The origin of replication on the eccDNA replicon 
occurs in a putative NAC containing gene. The NAC con-
taining gene family function in transcriptional regulation 
of plant stress response [23]. We identified genome-
encoded NAC orthologs in distantly related species such 
as Chenopodium, Spinacia, and Beta but were unable 
to find an ortholog in the closely related A. tubercula-
tus and A. hypochondriacus. However, this could be an 
annotation related issue because a genomic region with 
evidence of similarity was found, but a gene was not pre-
dicted. Together these results advance our understanding 
of eccDNA function and replication origin in plants.

Limitations
A well-defined consensus sequence has yet to be found 
for origins in any higher eukaryotic system, and yeast 
ARS sequences have never been shown to function in 
plant cells, to our knowledge. Further work is necessary 
to verify the function of these sequences in A. palmeri.
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D. pRS305 + CS-ARS1 + CEN6 (pRS305 + CEN6 + ARS1 − few colonies). E. 
pRS315 + CS-ARS1 + CEN6 (pRS315ΔARS + ARS1 − few colonies).

Additional file 6: Figure S4. Summary of the p-values resulting from 
two-tailed t-tests performed between samples using a 95% confidence 
level (α = 0.05).
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